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Abstract

Longitudinal control system design is considered for a linearized dynamic model of a su-

personic transport aircraft concept characterized by relaxed static stability and signifi-

cant aeroelastic interactions. Two LQG-type controllers are designed using the frequency-

domain additive uncertainty formulation to ensure robustness to unmodeled flexible modes.

The first controller is based on a 4th-order model containing only the rigid-body modes,

while the second controller is based on an 8th-order model that additionally includes the two

most prominent flexible modes. The performance obtainable from the 4th-order controller

is not adequate, while the 8th-order controller is found to provide better performance.

Frequency-domain and time-domain (Lyapunov) methods are subsequently used to assess

the robustness of the 8th-order controller to parametric uncertainties in the design model.





Summary

Longitudinal control system design is considered for a linearized dynamic model of a super-

sonic transport aircraft concept. The model consists of rigid-body modes and 18 aeroelastic

modes. Two LQG-type controllers are designed using the frequency-domain additive uncer-

tainty formulation to represent the unmodeled flexible modes. The first controller is based

on a 4th-order model containing only the rigid-body modes, while the second controller is

based on an 8th-order model that additionally includes the two most prominent flexible

modes. Both controllers are designed to provide stability robustness in the presence of

unmodeled flexible modes. The performance obtainable from the 4th-order design is not

adequate. The 8th-order controller can provide better performance, although it cannot sub-

stantially improve the flexible mode damping ratios. Frequency-domain and time-domain

(Lyapunov) methods are subsequently used to assess the robustness of the 8th-order con-

troller to parametric uncertainties in the design model. The frequency-domain methods

are found to give less conservative bounds on permissible parametric uncertainties than the

time-domain methods, but are still overly conservative compared to the bounds obtained by

numerical simulation. The results also indicate that a single actuator may not be sufficient

to obtain higher controller performance, and underscore the need for further research on

reducing the conservatism of Lyapunov-based methods.

1 Introduction

Large high-speed aircraft are characterized by static instability, low structural stiffness, and

significant aeroelastic interactions. Furthermore, large parametric changes can occur over

the flight envelope because of shifting of the center of gravity and aerodynamic center. In

addition, the frequencies, damping ratios, and mode shapes of the aeroelastic modes are

not known accurately. As a result, the problem of designing a control system which will

maintain closed-loop stability and desired performances is a challenging problem.

In this paper, we consider a mathematical model that is based on the supersonic cruise

aircraft (SCRA) model developed in [1]. The SCRA concept is a delta wing supersonic

aircraft which is nearly 300 ft. long and has a wing span of about 140 ft. The takeoff

weight is 730,000 lbf, and the mid-cruise speed is Mach 2.3 at 53,000 ft. altitude. LQG-

type control laws are designed to provide stability robustness in the presence of unmodeled

flexible modes. The designs are based on two reduced-order mathematical models. The

first model consists only of the rigid-body modes, while the second model additionally

includes the two most prominent flexible modes. The robustness of the control system to

parametric uncertainties in the design model is investigated using Lyapunov-based methods

and frequency-domain methods.



2 Mathematical Model

We consider a linearized longitudinal model of the SCRA [1] in rectilinear wing-level ascent

flight condition at weight 730,000 lbf, Mach 0.6, and 6,500 ft. altitude. This model was

modified in [2] to reflect static instability that is present in recent high-speed civil transport

(HSCT) concepts. The model is given by:

Xf = Afx] + Bfu (1)

where

xf = (_,z,O,u,w,q, rlT, ilT) T (2)

where _, z, denote the horizontal and vertical (rigid-body) center-of-mass (c.m.) positions

and 3, @ denote the corresponding velocities; 0 and q denote the rigid-body pitch angle and

rate; 7/is the 18 × 1 modal amplitude vector. Af is the 42 × 42 system matrix, Bf is the

42 × 1 input matrix, and u denotes the elevator deflection.

The center of mass is located 2,364 in. from the front of the aircraft. Two pitch rate

sensors (rate gyros), located at fore (2,050 in. from the front) and aft (2,500 in.) locations

in reference to the center of mass, produce the 2 × 1 output vector y(t) which consists of

the contributions of q as well as 7}.

The position variables _ and z are ignorable and can be removed from (1), which results

in the following 40th-order system

J: = Ax + Bu (3)

y =Cx (4)

where x = (0, u, w, q, 7] T, _T)T. The matrices A, B, and C have the following structures:

All(4x4) A12(4xls) A13(4xls)

A = 018X'I 018X18 /lax lS

Aa1(lSx4) A32(lSxls) A33(lSxlS)

B = [O,O, ba, b4,01xls,¢l×ls]

C = [ 01×3 1 01×18 _I/1(1×18) ]
01X3 I 01xlS tI/2(lx18)

The firstrow of An is (0,0,0,1),while the firstrows of A12 and AI3 are zero. The

matrices indicatestrong dynamic coupling between the rigidand flexiblemodes, as well as

significantcontribution of the flexiblemodes to the sensed outputs.

The open-loop eigenvaluesof A are shown in Table I. It can be seen that the rigid-

body modes consistof two realeigenvalues,one positiveand one negative,corresponding

to the staticallyunstable short period mode, and a pair of stable complex eigenvalues



corresponding to a mid-period phugoid-like mode. The flexible mode frequencies range

from 6.646 rad/sec for the first mode, to 47.298 rad/sec for the 18th mode. The damping

ratios for the flexible modes range from 0.0139 to 0.1695, the average being 0.0462. The

flexible modes are primarily fuselage bending modes. Modes 1 and 3 basically represent free

fuselage bending modes (1st and 2nd), and Mode 2 is similar to the "cantilevered" fuselage

1st bending mode [2]. Mode 4 is similar to the 2nd cantilevered fuselage bending mode,

and the shapes of the higher modes go up in complexity. The order of the mathematical

model is 40; however, for practical implementation, it is desirable to design a reduced-order

controller. In addition, the uncertainty in the model parameters is generally higher for

higher frequency modes; hence it is desirable to avoid the use of higher mode parameters in

control systems design. A reduced-order controller can be designed in two ways: 1) Design

a full-order controller and then apply order reduction methods, or 2) Use a reduced-order

design model. The second method is generally preferable because it does not rely on the

knowledge of the higher-mode parameters, which is highly inaccurate.

3 Model Order Reduction

To investigate order reduction, a number of similarity transformations were performed.

First, the A matrix was transformed to a quasi-diagonal form wherein the real eigenvalues

appear on the diagonal, and the remaining 2 × 2 blocks correspond to the complex eigenvalue

pairs (_i i jw_). The next transformation rearranged the diagonal blocks of the A matrix

so that the rigid-body eigenvalues appear in the first 4 x 4 diagonal block and the 2 x 2

blocks for the flexible modes appear in ascending order of natural frequencies:

A

A 0 0

--_1 0"1
(5)

--C_18 0"18

where A is a 4 × 4 matrix containing the eigenvalues corresponding to the rigid-body modes:

i

Aa 0 0 0

0 A2 0 0

0 0 % wp

0 0 -wv %

(6)

A1, A2 denote the two real eigenvalues corresponding to the short period mode, and av,

wv denote the real and imaginary parts of the eigenvalues corresponding to the phugoid-

like mode. cq, wi , i = 1,2, ...18, denote the real and imaginary parts of the eigenvalue



correspondingto the ith flexible mode. After these transformations, the B and C matri-

ces no longer have the forms shown previously. However, the transfer function can now

be expressed in the parallel form, i.e., as the sum of transfer functions corresponding to

individual modes, which facilitates model order reduction.

i=18

P(s) = P,(s) + _ P,(s) (7)
i=1

where Pr(s) and Pi(s) denote the (2x 1) transfer functions corresponding to the rigid-body

modes and the ith flexible mode, respectively.

The simplest method of order reduction would be to truncate all flexible modes beyond

a certain frequency. However, this approach does not generally yield favorable results

because some of the higher frequency modes may be prominent. Balanced realization [3],

which represents a better method of model reduction, uses a similarity transformation

to make the controllability and observability grammians equal and diagonal. Only the k

most controllable and observable state variables are retained to obtain a kth order model.

Other methods include optimal Hankel norm approximation [4], and stable factorization [5].

However, the application of these methods results in fully coupled system matrices, causing

loss of physical insight. An alternate method consists of assessing the controllability and

observability of flexible modes ()_i) by ranking them in the order of the reciprocal condition

numbers (evaluated at s = A_) of the matrices [sI - A B] and [M - A T cT],respectively

[6]. The most controllable/observable modes are then retained. Another alternate method,

which offers considerable physical insight, is to rank the flexible modes in the order of their

operator norms (H2 or Hoo):

IIP,(s)ll = Tr[P,(I)PT(Qldt (8)

where Pi(t) denotes the impulse response matrix of Pi(s), and Tr[.] denotes the trace

operator,

][P_(s)]]oo = sup -_[P(jw)] (9)
o_e(-oo,oo)

where _[.] denotes the largest singular value. For lightly damped flexible modes, it is well

known (see [7]) that the modal coordinates are approximately balanced and thus nearly

uncorrelated.

The H2 norm basically represents the energy in the impulse response, while the Hoo

norm represents an upper bound on the gain. The 2-norm can be readily obtained by

computing the controllability or observability grammian [8], and closed-form expressions

can be derived for both the 2-norm and the oo-norm for the present case.

The contribution of each flexible mode to the overall transfer function was computed

using H_ and Hoo norms of the transfer function of each mode. The modal rankings

(from highest to lowest norms) are given in Table II. There is some agreement between

the two rankings, with the exception of mode 4. The Hoo norm is more appropriate for



order reduction because we use the additive uncertainty robustness test, which employs

the upper bound on the Hoo norm. The two modes with the largest Hoo norms are modes

1 and 4, which are the 1st free fuselage bending mode and the 2nd cantilevered fuselage

bending mode, respectively.

4 LQG-Type Controller Design

When a reduced-order design model is used for LQG-type controller design, the closed-loop

stability cannot be guaranteed because of control and observation "spillovers" [9], which

consist of the inadvertent excitation of the uncontrolled modes by the control input, and

the unwanted contribution of the uncontrolled modes to the sensor outputs (See Figure 1).

One method of ensuring stability in the presence of spillovers is to represent the uncon-

trolled mode dynamics as "additive uncertainty" AP(s), which is in parallel with the design

model Po(s) (Figure 2). This formulation has been used extensively in flexible spacecraft

control [6], [10]. An upper bound on the magnitude 5[AP(jw)] can be obtained to form an

"uncertainty envelope". The height of the uncertainty envelope represents the worst-case

damping ratios and mode-shape magnitudes of the uncontrolled modes, while the width

accommodates lateral shifts in the peaks due to uncertainties in the natural frequencies.

A scalar transfer function P_,(s) can be obtained by inspection of the -5[AP(jw)] plot to

represent the uncertainty envelope, so that [ P,,(jw)I>_ Y[AP(jw)].

The design model, which consists only of the controlled modes, is given by:

._ = Adxd + Bdu + v (10)

Yd = Cdxd + w (11)

where Xd, Yd are the state and output vectors, and v, w denote zero-mean white noise

vectors.

The controller design problem can be formulated as an LQG design problem with the

following objective function

J = lim g[xT(t)Qxa(t) + uT(t)Ru(t)] (12)
t---*oo

where E denotes the expected value, Q = QT > O, R = R T > 0. The design parameters are

the LQ regulator (LQR) weighting matrices Q and R, as well as the Kalman-Bucy filter

(KBF) weighting matrices V = V T > 0 and W = W T > 0. (In theory, V and W represent

the process noise and sensor noise covariance intensities; however, they are actually used

as design parameters to obtain satisfactory controller response).

A sufficient condition for stability in the presence of unstructured additive uncertainty

is [S]:

-5[APC(I + PoC) -1] < 1 V real w (13)



where C(8) denotes the controller transfer function matrix, and the argument (jw) has

been dropped for convenience. The following two conditions are also sufficient:

1

y[Ap] < 5[C(I + PoC)-' l V real w (14)

1

I P_, I< -5[C(I + PoC)-'] V real w (15)

The control objectives are to stabilize the unstable rigid mode, and to obtain a crisp

pitch-angle step response to elevator step input. In addition the controller must be robust to

unmodeled aeroelastic modes, and if possible, should increase the damping of the aeroelastic

modes that are included in the design model. The design process, which has been used in

the past for flexible spacecraft control [6], is summarized as follows:

1. Select design parameters Q, R, V, W to obtain a nominal LQG controller for the design

model, that gives satisfactory closed-loop eigenvalues and frequency response.

2. Apply the robustness test in the presence of additive uncertainty. If the test fails,

adjust the weighting matrices and go back to step 1.

3. Repeat until satisfactory performance and robustness are obtained.

(A systematic procedure, based on an analytical expression for Hoe-norm sensitivity,

was presented in [11] for reducing the left-hand term in Eq. (13). This procedure can

be used to perform Step 2). Two different controller designs were performed. The first

(4th-order) controller was based on a design model consisting only of the four rigid-body

state variables, with all the flexible modes lumped into an "additive uncertainty". The

second (8th-order) controller consisted of the rigid-body states and the four state variables

corresponding to two most significant flexible modes.

4.1 Fourth-Order Controller

In this case, Ad is equal to A, and Bd and Cd are defined accordingly. Figure 3 shows

the singular value plot (or a-plot) of the flexible mode transfer function containing all 18

flexible modes. The following scalar transfer function, whose magnitude plot "envelopes"

the uncertainty, was obtained by trial and error: (See Figure 3):

lO0(s + 0.5) _
P_(s) = (16)

(s + 2)(s + 5)(s + 10)

While attempting a nominal LQG controller design, it was found to be difficult to

increase the closed-loop frequency of the phugoid-like mode while simultaneously moving

the unstable short period mode deeper into the left half plane. Despite several trials, it

was not possible to find LQR weights which gave suitable pole locations. However, it was



known that a proportional plus integral (PI) control law developed in [2] gave satisfactory

closed-loop pole locations. Therefore, an inverse LQR problem was formulated and solved,

which gave the corresponding Q matrix (with R = 1) for the "rigid-only" design model. (A

discussion of the inverse LQR problem can be found in [12]). The set of closed-loop poles

of the design model, which is the union of the LQR and KBF poles, governs the closed-loop

system's speed of response (bandwidth). Therefore the initial V and W were chosen to

obtain closed-loop pole KBF pole locations close to those for the LQR.

The initial LQG controller failed to satisfy the robustness condition of Eq. (15), and

it was necessary to reduce the controller gain by reducing appropriate elements of Q and

V. After a few iterations involving weight adjustments for the LQR and the KBF, the

robustness condition was satisfied (Figure 4). The controller, whose frequency response

is shown in Figure 5, is unstable, although the closed-loop system is stable and robust

to unmodeled flexible modes. The closed-loop LQR and KBF eigenvalues are shown in

Table III, and the closed-loop eigenvalues of the complete 40th-order system are given in

Table IV. The phugoid-like mode's closed-loop frequency (for both LQR and KBF) shows

substantial improvement as compared to the open-loop value. There is no significant change

in the flexible mode frequencies and damping ratios. This controller, although robust to

unmodeled flexible modes, was found to give a poor response to step input in the elevator.

In particular, it had a 136 % overshoot and a settling time of nearly 150 see. (We define

settling time as the time beyond which the step response remains within 10 % of its final

value). In order to improve the controller, the LQR weighting function was modified by the

addition of the term c.O 2, where c is a constant. It was found that only small performance

improvement was possible without violating the robustness test (15).

4.2 Eighth-order Controller

In order to improve the rigid-body response and the flexible mode damping, an eighth

order design model was next considered, which consists of four rigid-body states and four

state variables corresponding to flexible modes 1 and 4, which have the largest oo-norms.

Figure 6 shows the a-plot of modes 1 and 4 only, as compared to the a-plot of all 18 flexible

modes. It can be seen that modes 1 and 4 capture the highest peaks of the complete flexible

dynamics. The a-plot for the remaining elastic modes 2, 3, and 5-18, is shown in Figure 7.

The system matrix for the 8th-order design model is given by:

, ] (17)
--031 al --034 a4

For this model, the following P,,(s) was chosen as the uncertainty envelope:

200(s + 1) (18)
P,,(s) = (s + 20)(s + 80)
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To obtain the 8 × 8 Q matrix for the design model, the 4 × 4 Q matrix used in the initial

iteration of the 4th-order controller design was augmented by adding weights corresponding

to the flexible mode states. The weights in the second 4 ×4 diagonal block of Q were adjusted

to increase the flexible mode damping and frequencies. R was held at unity. The KBF

weights were selected to obtain closed-loop estimator eigenvalues with magnitudes roughly

equal to those for the LQR. The initial controller did not satisfy the additive uncertainty

robustness condition; hence iterative loop shaping was performed until the condition was

satisfied. For this case, it was possible to increase the phugoid-like mode's closed-loop

frequency to 0.85 rad/sec (for LQR) and 0.7 rad/sec (for KBF), which represents nearly

100 percent improvement over the 4th-order controller. In addition, the (LQR and KBF)

damping ratios for flexible mode 1 increased to over 0.1 as compared to its open-loop value

of 0.07. The damping ratio for mode 4 increased to 0.076 for the LQR and 0.041 for the

KBF, as compared to its open-loop value of 0.014. The LQR and KBF eigenvalues are given

in Table V. The closed-loop eigenvalues of the complete (40th-order) evaluation model are

given in Table VI. The closed-loop eigenvalues are somewhat different from the LQR and

KBF eigenvalues, but still indicate significantly superior performance than the 4th-order

controller. Figure 8 shows the final additive uncertainty robustness test. The controller

frequency response is shown in Figure 9. As in the case of the 4th-order controller, the

8th-order controller C(s) is itself unstable, although the closed-loop system is stable as

well as robust to unmodeled flexible modes. The response to a step input in the elevator

was significantly better than that of the 4th-order controller. Figures 10 and 11 show the

(normalized) pitch angle and rate at gyro location 1 resulting from a step input in the

elevator. The settling time is nearly 100 sec. and the overshoot is 36 %. It was not possible

to significantly improve the response without violating the condition in (15). The effect of

the flexible modes is seen in the pitch rate response (Figure 11). The improvement in the

damping (for modes 1 and 4) was rather small, and any attempts to further improve the

damping by increasing the weights resulted in the violation of the robustness condition.

The results indicate that it is difficult to improve aeroelastic mode damping using the

elevator as the only input.

5 Robustness to Parametric Uncertainties

The controllers designed in the previous section offer robust stability in the presence of

unmodeled flexible modes. Furthermore, uncertainties in the unmodeled dynamics are

tolerated without instability as long as the magnitude plot _[AP(jw)] lies below the un-

certainty envelope ] P,,(jw) ]. However, the designs assume perfect knowledge of the design

model parameters, which may also have significant uncertainties. Therefore it is important

to investigate the robustness of the controllers in the presence of parametric uncertainties

in the design model.



Robustness to structured parametric uncertainties can be investigated using the struc-

tured singular value (or #-) analysis [13]. The problem with standard p-analysis is that

it assumes the uncertainties to be complex-valued rather than real which usually results

in overly conservative estimates of permissible parametric uncertainty. The development

of/_-analysis and synthesis methods for real parametric uncertainties continues to be an

active area of research.

Alternative approaches for the estimation of permissible parametric uncertainty include

Kharitonov methods and Lyapunov methods. A fundamental result by Kharitonov (see

[14]) addresses polynomials with uncertain coefficients which lie in given intervals, and

gives a necessary and sufficient condition for the roots to be in the open left-half plane

(OLHP). In practice, however, the mapping from the parameter space to the characteristic

polynomial coefficients is not only highly nonlinear and often intractable, but also results

in the coefficients being inter-related. As a result, the robustness conditions are usually

quite conservative.

Lyapunov-based methods essentially obtain norm bounds on the perturbation in the

closed-loop system matrices, while utilizing the information about the structure of the

uncertainty to the maximum extent possible. Consider the system;

= (Ao + E)x := Ax (19)

where Ao is the nominal system matrix and E is the perturbation matrix. Ao is assumed

to be stable (as would be the case if a nominal stabilizing control law is used). Suppose

each element Eij is bounded in an interval:

] E 0 I<_ eij (20)

Let

Define the matrix U_ as follows:

e ----max eO (21)
%2

U_,, = e--i (22)"
e

That is, U_ denotes the "relative error" matrix. All the elements of U_ are positive. Suppose

Q = QT > 0 is an n × n matrix and P is the symmetric positive positive definite solution

of the Lyapunov equation;

ATp + PAo = -Q (23)

Let Pm denote the "modulus matrix" of P:

Pro,,=1 P,j l (24)

Let [.]s denote the symmetric part of a matrix L, i.e.,

Ls = I(L + L T )
2

(25)
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The following sufficient conditions are basedon Lyapunovmethods.
Condition 1- (Patel and Toda, 1980[15]): The perturbed system is stable for all

I Eij I< eij if

_m(Q)
_(E) < 2)_M(P) (26)

where _m(.) and '_M(.) denote the smallest and largest eigenvalues.

If E is as in Eq. (20), Em = _ Ue, and

_(E) < _(Em)= __(Ve) (27)

Then a sufficient condition for stability is:

Am(Q)
e < 2"_(Ue)$M(P) (28)

If all the parameters are equally perturbed, I Eij I= e, and _(U,) = n.

Condition 2- (Yedavalli, 1985 [16]): The perturbed system is stable if

Am(Q)
e < 2_M[(PmUe)s] (29)

5.1 Robustness of Dynamic Compensator

Consider the m-input,/-output, nth order system:

= (Ao + AA)x + (Bo + AB)u (30)

y = (Co + AC)x (31)

where AA, AB, AC denote the perturbations in the nominal system matrices (Ao, Bo, Co).

Suppose the system is controlled by an ncth order dynamic controller:

_ = A_zc + Bcy (32)

u = -C_xc (33)

Denoting Y = (x T, xT) T, the _th order (_ = n + n_) closed-loop system can be written as:

where

Let

".Z- -- --

x = (Ao + E)_ (34)

B_Co A_ B_AC 0

I AAij I< eA,,,

(35)

IAB_jI< _s,, I AC_j I_<ec,, (36)

10



The upper bound eij on Eij is obtained as follows:

For i,j C [1,n], eij= CA, (37)

For i E [1,n], j E [n + 1,g], eij =

For i e [n + 1,_], j • [1,n], eij=

_'n m

max _ ABikC_k, = _ eB,k I C_k, I
i_[l,n]

i6[n+a,n--'] k=l k=l

l l

max _ Bc,.ACkj = _ ec,_ [ Bc,. [
,e[n+l,n-']

jE[l,n] k=l k=l

For i,j • [n + l,g], eij=0

(38)

(39)

(40)

Then¢ and U¢ can be defined as in Eqs. (21), (22).

Suppose P and Q are positive definite symmetric matrices such that

-_T-fi + PAo : -Q (41)

The conditions (26) and (29) can be used to obtain the robustness bound on e. The

sufficient condition of (29) is generally less conservative than that of (26). It should be

noted, however, that both bounds depend on the choice of the Q matrix. At present there

appear to be no systematic methods available for choosing Q.

If the dynamic compensator is an LQG-type controller designed for the nominal plant

(Ao, Bo, Co), it can be easily verified that

Ac = Ao- BoG- HCo (42)

Bc = H (43)

C_=G (44)

where G and H denote the LQR and KBF gain matrices respectively.

5.2 Robustness Results for the SCRA Model

The Lyapunov-based sufficient conditions were used to investigate robustness of the 8th-

order LQG controller to parametric uncertainties in the design model. Based on experience

with flexible space structures [6], the parametric uncertainties most important for stability

robustness are those in the flexible mode frequencies. Therefore the uncertainties in the

frequencies (Wl and w4) of the two flexible modes included in the design model were inves-

tigated. Since no systematic methods exist for choosing Q, the value Q = 2I was used in

(41), and the allowable bounds on frequency perturbations were obtained from conditions

1 and 2. The maximum permissible perturbation (in both wl and w4) obtained using Con-

dition 1 was 6.9 x 10 .3 percent, while that obtained using Condition 2 was 0.93 percent,

which indicates that Condition 2 is far less conservative than Condition 1.

11



The frequency domain additive uncertainty condition (14) was next used to investigate

the permissible perturbation bounds in wl and w4. For this case, wl and w4 in the 40th-

order plant (P(s)) were perturbed by certain percentages, and the additive uncertainty

/kP(8) [= P(s) - Po(s)] consisted of both parametric uncertainties and unmodeled flexible

modes. Figure 12 shows the robustness condition for 3 percent perturbation in wl and 2

percent perturbation in w4. The condition was violated for larger perturbations. Based on

these results, the 8th-order controller can tolerate +3 percent uncertainty in wl and ±2 per-

cent uncertainty in w4. These bounds are better than the Lyapunov-based bounds despite

the fact that the latter utilize the information about the structure of the uncertainty. To

investigate the degree of conservatism of the frequency-domain bounds, the eigenvalues of

the complete 48th-order closed-loop system were computed for a large number (about 300)

of combinations of perturbed values of wl and w4. The closed-loop system remained stable

well beyond the permissible bounds indicated by the frequency domain condition. In par-

ticular, perturbations of well over 30 percent in wl and w4 were tolerated without instability,

which indicates that the 8th-order controller has good robustness to these uncertainties.

The results obtained indicate that Lyapunov-based methods generally yielded conserva-

tive bounds for permissible parametric uncertainty, as compared to the frequency domain

unstructured uncertainty formulation. It should be noted, however, that the Lyapunov

bounds were obtained with an arbitrary choice of the Q matrix, and therefore a general

conclusion cannot be drawn regarding the conservatism of the methods. It may be possible

to improve the Lyapunov bounds by optimally choosing Q to maximize the bound. The

bounds, however, are not differentiable; therefore, conventional gradient-based optimiza-

tion methods cannot be readily applied. Additional results were recently reported in [17]

in this area, which can yield less conservative Lyapunov-based bounds, and they should be

investigated.

6 Concluding Remarks

Controller design was considered for longitudinal control of a supersonic transport aircraft

model in the presence of significant aeroelastic modes. Two controllers were designed using

frequency domain loop shaping employing the LQG method, wherein the unmodeled flex-

ible modes were represented as additive uncertainty. The first (4th-order) controller was

designed to control only the rigid-body modes without destabilizing the flexible modes,

while the second (8th-order) controller was designed to control the rigid-body modes and

the two most prominent flexible modes. The 4th-order controller gave poor performance

characterized by excessive overshoot and large settling time. It was not possible to improve

the 4th-order design while still guaranteeing stability in the presence of unmodeled flexi-

ble modes. The 8th-order controller gave significantly better performance, which indicates

the necessity of including some of the aeroelastic modes in the design model for controller

12



design for this classof aircraft. It wasnot possibleto substantially improve the flexible
mode damping ratios without destabilizing the uncontrolledmodes. Basedon the design
iterations performed, it appearsto be difficult, if not impossible,to obtain higher perfor-
mancewith only oneactuator and two sensors.The robustnessof the 8th-order controller
to uncertainties in the flexible mode frequencieswas investigated using Lyapunov-based

methodsaswell asfrequencydomain tests. The Lyapunov-basedmethodsgavemorecon-
servative boundson the permissibleparametric uncertainty as comparedto the frequency
domain unstructured uncertainty formulation. The latter method, which itself is conserva-
tive, indicated rather small uncertainty tolerancein flexible mode frequencies.Numerical
experimentation, however,demonstratedthat the controller can tolerate over 30 % uncer-
tainty in the flexible modefrequencieswithout instability. The resultsindicate that further

researchis neededon methods for robust control designand damping enhancementfor

such systems. It would also be highly desirableto investigatemethods for reducing the
conservatismof the Lyapunov-basedrobustnessbounds.
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Table I. Open-loopeigenvalues

Elastic Eigenvalue Frequency Damping
modeno. ratio

0.1024 0.1024 - 1.0000

Rigid -0.1347+0.1093i 0.1735 0.7763

-1.2131 1.2131 1.0000

i ...... -0_481__6(6284i --- 6;6458 ............ 010724

2 -1.9879+11.5569i 11.7267 0.1695

3 - 1.4348+ 14.7948i 14.8642 0.0965

4 -0.2287+16.4597i 16.4613 0.0139

5 -0.6289+23.3865i 23.3949 0.0269

6 -0.6680-&-_26.0988i 26.1074 0.0256

7 - 1.9759+28.6077i 28.6758 0.0689

8 -0.5698+30.2615i 30.2668 0.0188

9 -0.7014+32.1394i 32.1471 0.0218

10 -2.1891+34.0663i 34.1365 0.0641

11 -0.9042+35.6527i 35.6642 0.0254

12 - 1.0329+37.6960i 37.7102 0.0274

13 -2.0194+40.0825i 40.1334 0.0503

14 -0.9870-__42.3950i 42.4065 0.0233

15 - 1.1167+44.0393i 44.0535 0.0253

16 -0.9666+45.2971 i 45.3074 0.0213

17 -2.7348+46.5604i 46.6406 0.0586

18 - 1.0438+47.2865i 47.2980 0.0221

Table H. Norm ranking of elastic modes in descending order

I-12- norm : 1, 13, 12,3, 14,4,9, 10, 15, 6, 16, 18, 17,8,2, 11,5,7 IIH -norm : 1,4,12,13,3,14,9,6,15,10,16,18,8,5,11,2, 17,7
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Table 111.Regulatorandestimatoreigenvaluesfor 4thorder controller

Eigenvalue Frequency Damping
ratio

LQ R e-'_envalues
-0.0180 0.0180 1.0000

-0.3204±0.2886i 0.4312 0.7430
-1.2071 1.2071 1.0000

KBFei_envalues
-0.1024 0.1024 1.0000

-0.3089±0.2234i 0.3812 0.8102

-1.2131 1.2131 1.0000

Rigid

Elastic

Table IV. Closed-loop eigenvalues for 4th order controller

Eigenvalue Frequency Damping
ratio

-0.0199 0.0199 1.0000
-0.1004 0.1004 1.0000

-0.2850±0.1872i 0.3410 0.8358

-0.2974±0.3595i 0.4666 0.6374
-1.2081 1.2081 1.0000
-1.2131 1.2131 1.0000

-0.5222±6.8813i 6.9011 0.0757

-1.9893±11.5629i 11.7328 0.1696

-1.4302±14.7344i 14.8036 0.0966

-0.2391±16.4538i 16.4556 0.0145

-0.6293±23.3853i 23.3938 0.0269

-0.6697±26.0918i 26.1004 0.0257

-1.9733±28.6090i 28.6770 0.0688

-0.5686±30.2592i 30.2645 0.0188

-0.7075±32.1268i 32.1346 0.0220

-2.1835±34.0534i 34.1233 0.0640

-0.9054±35.6541i 35.6656 0.0254

-1.0404±37.6805i 37.6948 0.0276

-2.0124±40.0627i 40.1133 0.0502

-0.9858±42.3963i 42.4078 0.0232

-1.1155±44.0343i 44.0484 0.0253

-0.9666±45.2994i 45.3097 0.0213

-2.7355±46.5600i 46.6403 0.0587

-1.0429±47.2865i 47.2980 0.0220
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Table V. Regulator and estimator eigenvalues for 8th order controller

Rigid

Elastic

Rigid

Elastic

Eigenvalue Frequency Damping
ratio

LQ R ei_envalues
-0.0083 0.0083 1.0000

-0.6484+0.5533i 0.8524 0.7607

-Jo 13_48........... L 13.48 ....... 1.0000
-0.9283+6.5950i 6.6600 O. 1394

-1.2317+16.4513i 16.4973 0.0747

KBF ei_envalues
-0.1024 0.1024 1.0000
-0.6963+0.0907i 0.7022 0.9916
-1.2131 1.2131 1.0000

................................

-0.6679+6.6133i 6.6469 0.1005

-0.6715+ 16.4568i 16.4705 0.0408

Table VI. Closed-loop eigenvalues for 8th order controller

Rigid

Elastic

Eigenvalue Frequency Damping
ratio

-0.0108 0.0108 1.0000
-0.0997 0.0997 1.0000
-0.5680 0.5680 1.0000

-0.5607:k-0.5043i 0.7542 0.7435
- 1.1562_-_-)-0.1742i 1.1692 0.9888

:).2131 ............ _1_.2_1_3__1......... 1_._0000
-0.6587+6.6122i 6.6449 0.0991

-0.9951+6.5730i 6.6479 0.1497

-2.0533+ 11.6470i 11.8266 0.1736
-0.8210-L-_ 14.0037i 14.0277 0.0585

-0.4396+ 16.4927i 16.4985 0.0266

-2.0118+16.7903i 16.9104 0.1190

-0.6252+23.3700i 23.3783 0.0267

-0.6943+26.0593i 26.0686 0.0266

- 1.9551+28.6190i 28.6857 0.0682

-0.5588+30.2423i 30.2474 0.0185

-0.7284+32.0308i 32.0391 0.0227

-2.1631 +34.0027i 34.0714 0.0635

-0.9177+35.6657i 35.6775 0.0257
- 1.0781+37.5127i 37.5282 0.0287

- 1.8832+39.8877i 39.9321 0.0472

-0.9495+42.3830i 42.3936 0.0224

- I. 1040!-_43.9945i 44.0083 0.0251

-0.9646+45.3059i 45.3162 0.0213

-2.7393+46.5498i 46.6304 0.0587

- 1.0309+47.2873i 47.2985 0.0218
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Figure 3: Uncertainty envelope for 4th-order controller
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Figure 5: Frequency response of 4th-order controller
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Figure 8: Robustness test for 8th-order controller
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Figure 9: Frequency response of 8thmorder controller
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Figure 10: Step response (pitch angle at gyro 1)
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